JVAS announces awards - Four best research articles (one each from basic, production, para-clinical and clinical subjects) and one best short communication will be adjudged for awards each year!!!

Journal of Veterinary and Animal Sciences

Volume: 56 Issue: 1

  • Open Access
  • Review Article

Advances in Infectious Disease Modeling: A perspective on 3D-Bioprinted Tissue Models to Study Host-Pathogen Interactions

Soja Saghar Somana, Suresh V Kuchipudic and Sunil Kumarab

aDivision of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE., bTandon school of Engineering, New York
University New York, Brooklyn, USA., cDepartment of Infectious Diseases and Microbiology, School of Public Health,
University of Pittsburgh, Pittsburgh, USA.

Year: 2025, Page: 1-7, Doi: https://doi.org/10.51966/jvas.2025.56.1.1-7

Received: Feb. 27, 2025 Accepted: March 14, 2025 Published: March 31, 2025

Abstract

Three-dimensional (3D) bioprinting is a revolutionary biomedical technology that allows researchers to create custom 3D tissue models to study human organ physiology and disease pathobiology. Bioprinting utilizes bioinks containing living cells, biomaterials, and essential growth factors to construct complex, 3D tissue-like structures with remarkable precision. Their application in infectious disease research is particularly significant, as they replicate organs such as lungs, liver, skin, and intestines, allowing scientists to analyze pathogen-host interactions at cellular and tissue levels closely. By employing 3D bioprinting, researchers have successfully developed tissue models to study viral and bacterial infections, offering insights into pathogen evolution, immune responses, and therapeutic interventions. These models play a critical role in drug discovery by providing a physiologically relevant platform for testing the efficacy and safety of antimicrobial and antiviral drugs. Additionally, bioprinted tissues can minimize reliance on animal testing and improve species-specific drug response predictions. 3D bioprinted models are poised to transform infectious disease research and therapeutic development. Here, we give a perspective on 3D bioprinting and its applications in infectious disease modeling.

Keywords: 3D bioprinting, Infectious Diseases, Disease modeling, Organoids, Bioengineering

References

Aguilar, C., Alves Da Silva, M., Saraiva, M., Neyazi, M., Olsson, I. A. S. and Bartfeld, S. 2021. Organoids as host models for infection biology – a review of methods. Exp. Mol. Med.53(10): 1471–1482.

Aliyazdi, S., Frisch, S., Hidalgo, A., Frank, N., Krug, D., Müller, R., Schaefer, U. F., Vogt, T., Loretz, B. and Lehr, C.M. 2023. 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complex in vitro infection models. Biofabrication, 15(3): 035019.

Behar, S. M., Divangahi, M. and Remold, H. G. 2010. Evasion of innate immunity by Mycobacterium tuberculosis: Is death an exit strategy? Nat. Rev.Microb.8(9): 668–674.

Berg, J., Hiller, T., Kissner, M. S., Qazi, T. H., Duda, G. N., Hocke, A. C., Hippenstiel, S., Elomaa, L., Weinhart, M., Fahrenson, C. and Kurreck, J. 2018. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci. Rep.8(1):13877.

Berg, J., Weber, Z., Fechler-Bitteti, M., Hocke, A. C., Hippenstiel, S., Elomaa, L., Weinhart, M. and Kurreck, J. 2021. Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses, 13(8): 1590.

Bernal, P. N., Delrot, P., Loterie, D., Li, Y., Malda, J., Moser, C. and Levato, R. 2019. Volumetric Bioprinting of Complex Living‐Tissue Constructs within Seconds. Adv. Materials, 31(42): 1904209.

Cheng, L., Liu, T., Liu, Q., Lian, L., Tang, G., Mille, L. S., García, F. R., Engstrand, L., Zhang, Y. S.and Du, J. 2023. A 3D Bioprinted Gut Anaerobic Model for Studying Bacteria–Host Interactions. Research,6: 0058.

Chia, S. P. S., Kong, S. L. Y., Pang, J. K. S. and Soh, B.-S. 2022. 3D Human Organoids: The Next “Viral” Model for the Molecular Basis of Infectious Diseases. Biomedicines, 10(7): 1541.

Choudhury, D., Anand, S. and Naing, M. W. 2018. The arrival of commercial bioprinters – Towards 3D bioprinting revolution! Int. J. Bioprinting, 4(2): 139.

Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L. M., Guimarães, K. P., Benazzato, C., Almeida, N., Pignatari, G. C., Romero, S., Polonio, C. M., Cunha, I., Freitas, C. L., Brandão, W. N., Rossato, C., Andrade, D. G., Faria, D. de P., Garcez, A. T., Buchpigel, C. A. and Beltrão-Braga, P. C. B. 2016. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 534(7606): 267–271.

de Melo, B. A. G., Benincasa, J. C., Cruz, E. M., Maricato, J. T. and Porcionatto, M. A. 2021. 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomed. J.44(1): 31–42.

Devalla, H. D. and Passier, R. 2018. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci. Trans. Med. 10(435): eaah5457.

Dieng, M. M., Diawara, A., Manikandan, V., Tamim El Jarkass, H., Sermé, S. S., Sombié, S., Barry, A., Coulibaly, S. A., Diarra, A., Drou, N., Arnoux, M., Yousif, A., Tiono, A. B., Sirima, S. B., Soulama, I. and Idaghdour, Y. 2020. Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nat. Comm.11(1): 5093.

Ettayebi, K., Kaur, G., Patil, K., Dave, J., Ayyar, B. V., Tenge, V. R., Neill, F. H., Zeng, X.-L., Speer, A. L., Di Rienzi, S. C., Britton, R. A., Blutt, S. E., Crawford, S. E., Ramani, S., Atmar, R. L. and Estes, M. K. 2024. Insights into human norovirus cultivation in human intestinal enteroids. mSphere, 9(11): e00448-24.

Fritschen, A., Lindner, N., Scholpp, S., Richthof, P., Dietz, J., Linke, P., Guttenberg, Z., and Blaeser, A. 2024. High‐Scale 3D‐Bioprinting Platform for the Automated Production of Vascularized Organs‐on‐a‐Chip. Adv.Healthcare Mat.13(17) :2304028.

Govindharaj, M., Al Hashimi, N., Soman, S. S., Zhou, J., AlAwadhi, S., and Vijayavenkataraman, S. 2024. 3D-bioprinted tri-layered cellulose/collagen-based drug-eluting fillers for the treatment of deep tunneling wounds. Bio-Design Manuf.7(6): 938–954.

Hashimi, N. S. A., Soman, S. S., Govindharaj, M. and Vijayavenkataraman, S. 2022. 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering. Mater. Today Commun.31: 103382.

Hiller, T., Berg, J., Elomaa, L., Röhrs, V., Ullah, I., Schaar, K., Dietrich, A.-C., Al-Zeer, M. A., Kurtz, A., Hocke, A. C., Hippenstiel, S., Fechner, H., Weinhart, M. and Kurreck, J. 2018. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. Int. J. Mol. Sci., 19(10): 3129.

Ho, D. L. L., Lee, S., Du, J., Weiss, J. D., Tam, T., Sinha, S., Klinger, D., Devine, S., Hamfeldt, A., Leng, H. T., Herrmann, J. E., He, M., Fradkin, L. G., Tan, T. K., Standish, D., Tomasello, P., Traul, D., Dianat, N., Ladi, R. andSkylar-Scott, M. A. 2022. Large-Scale Production of Wholly Cellular Bioinks via the Optimization of Human Induced Pluripotent Stem Cell Aggregate Culture in Automated Bioreactors. Adv. Healthc. Mater.11(24):  2201138.

Hwang, K. S., Seo, E. U., Choi, N., Kim, J. and Kim, H. N. 2023. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioact.Mater.21: 576–594.

Jing, S., Lian, L., Hou, Y., Li, Z., Zheng, Z., Li, G., Tang, G., Xie, G. and Xie, M. 2023. Advances in volumetric bioprinting. Biofabrication, 16(1): 012004.

Kim, J. J. and Cho, D.-W. 2024. Advanced strategies in 3D bioprinting for vascular tissue engineering and disease modelling using smart bioinks. Virtual hys. Prototyp.19(1): e2395470.

Kolesky, D. B., Homan, K. A., Skylar-Scott, M. and Lewis, J. A. 2018. In Vitro Human Tissues via Multi-material 3-D Bioprinting. ALTA, 46(4): 209–215.

Kuchipudi, S. V., Nelli, R. K., Gontu, A., Satyakumar, R., Surendran Nair, M. and Subbiah, M. 2021. Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses, 13(2): Article 2.

Lee, Y., Lee, M. K., Lee, H.-R., Kim, B., Kim, M. and Jung, S. 2024. 3D-printed airway model as a platform for SARS-CoV-2 infection and antiviral drug testing. Biomaterials, 311: 122689.

Long, R. K. M., Piatti, L., Korbmacher, F. and Bernabeu, M. 2022. Understanding parasite–brain microvascular interactions with engineered 3D blood–brain barrier models. Mol.Microb., 117(3): 693–704.

MacGregor, P., Szöőr, B., Savill, N. J. and Matthews, K. R. 2012. Trypanosomal immune evasion, chronicity and transmission: An elegant balancing act. Nat. Rev.Microb.10(6): 431–438.

Neufeld, L., Yeini, E., Pozzi, S. and Satchi-Fainaro, R. 2022. 3D bioprinted cancer models: From basic biology to drug development. Nat.Rev. Cancer, 22(12): 679–692.

Ouyang, L., Armstrong, J. P. K., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., Zhou, K., Burdick, J. A., and Stevens, M. M. 2020. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv.6(38): eabc5529.

Shpichka, A., Bikmulina, P., Peshkova, M., Kosheleva, N., Zurina, I., Zahmatkesh, E., Khoshdel-Rad, N., Lipina, M., Golubeva, E., Butnaru, D., Svistunov, A., Vosough, M., and Timashev, P. 2020. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int. J. Bioprinting, 6(4): 302.

Skylar-Scott, M. A., Uzel, S. G. M., Nam, L. L., Ahrens, J. H., Truby, R. L., Damaraju, S., and Lewis, J. A. 2019. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv., 5(9): eaaw2459.

Soman, S. S., Govindraj, M., Al Hashimi, N., Zhou, J., and Vijayavenkataraman, S. 2022. Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications. Int. J. Bioprinting, 8(4): 604.

Soman, S. S. and Vijayavenkataraman, S. 2020. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int. J. Bioprinting, x, 280.

Zhang, Y. S., Haghiashtiani, G., Hübscher, T., Kelly, D. J., Lee, J. M., Lutolf, M., McAlpine, M. C., Yeong, W. Y., Zenobi-Wong, M. and Malda, J. 2021. 3D extrusion bioprinting. Nat.Rev. Methods Primers, 1(1): 75.

Zhou, J., Li, C., Liu, X., Chiu, M. C., Zhao, X., Wang, D., Wei, Y., Lee, A., Zhang, A. J., Chu, H., Cai, J.-P., Yip, C. C.-Y., Chan, I. H.-Y., Wong, K. K.-Y., Tsang, O. T.-Y., Chan, K.-H., Chan, J. F.-W., To, K. K.-W., Chen, H. and Yuen, K. Y. 2020. Infection of bat and human intestinal organoids by SARS-CoV-2.Nat. Med.26(7): 1077–1083.

Zhou, J., Li, C., Sachs, N., Chiu, M. C., Wong, B. H.-Y., Chu, H., Poon, V. K.-M., Wang, D., Zhao, X., Wen, L., Song, W., Yuan, S., Wong, K. K.-Y., Chan, J. F.-W., To, K. K.-W., Chen, H., Clevers, H. and Yuen, K.-Y. 2018. Differentiated human airway organoids to assess infectivity of emerging influenza virus. PNAS, 115(26): 6822–6827.

 

Cite this article

Soman, S.S., Kuchipudi, S.V. and Kumar, S. 2025. Advances in Infectious Disease Modeling: A perspective on
3D-Bioprinted Tissue Models to Study Host-Pathogen Interactions.
J. Vet. Anim. Sci. 56 (1):1-7

Views
222
Downloads
92
Citations