Journal of Veterinary and Animal Sciences

Volume: 55 Issue: 3

  • Open Access
  • Research Article

Insecticidal activity of silver nanoparticles synthesised from aqueous leaf extract of Eucalyptus tereticornis on horn flies

Jagadish1, G.S.Mamatha1*, C. Ravikumar2, Jaya Nagappa Lakkundi3, ShriKrishna Isloor4, V.T. Shilpa5, T.N.K.V. Prasad6, H.M. Yathish7 and K. J. Ananda3

1 Department of Veterinary Parasitology, Veterinary College, Hombal Road, Gadag-582101, 2 Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hassan- 573 202, 3 Department of Veterinary Parasitology Veterinary College, Shivamogga-577204, 4 Department of Veterinary Microbiology, Veterinary College, Hebbal, Bengaluru- 560 024, 5 Department of Veterinary Pathology, Veterinary College, Hassan- 573 202, 7 Department of Animal Genetics and Breeding, Veterinary College, Hebbal, Bengaluru- 560 024, Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, 6 Nanotechonology Laboratory Acharya N.G.Ranga Agricultural University Tirupati-517502

Year: 2024, Page: 651-657, Doi: https://doi.org/10.51966/jvas.2024.55.3.651-657

Received: July 8, 2024 Accepted: Sept. 2, 2024 Published: Sept. 30, 2024

Abstract

An insecticidal efficacy of silver nanoparticles (AgNps) synthesised from aqueous leaf extract of Eucalyptus tereticornis, was carried out against adults, larval and pupal stages of Haematobia flies. In in vitro adulticidal and larvicidal assays the mortality ranged between 30.0 to 67.0 and 5.0 to 75.0 per cent in treated groups after 24 hours at different concentrations, respectively. The inhibition of pupation ranged between 5.0 to 30.0 per cent after 24 hours by dipping method. The lethal concentration values were calculated for all the assays. The probit analysis revealed the significant (p<0.05) effect at different concentrations of AgNPs synthesised from aqueous leaf extract of E. tereticornis on adults, larvae and pupal mortality

Keywords: Haematobia flies, silver nanoparticles, in vitro assays

References

Abott, W.S. 1925. A method of computing the effectiveness of insecticides. J. Econ.         Entomol. 18:265-267.

            Asha, G.N. 2013. Immunological studies and control of Haematobia flies. MVSc thesis     Karnataka Veterinary, Animal and Fisheries Science University, Bidar, 40-42p.

            Avinash, B., Venu, R., Raj, M.A., Rao, K.S., Srilatha, C. and Prasad, T.N.V.K.V. 2017. In           vitro evaluation of acaricidal activity of novel green silver nanoparticles against             deltamethrin resistance Rhipicephalus (Boophilus) microplus. Vet. Parasitol.           237:130-136.

            Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N.S.,     Kadaikunnan, S., Khaled, J.M. and Benelli, G. 2017. Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes          aegypti and microbial pathogens. Parasitol. Res. 116(6):1637-1651.

            Benelli, G. 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against           mosquitoes of medical and veterinary importance: a review. Parasitol. Res.       115(1):23-34.

            Barik, T.K., Sahu, B. and Swain, V. 2008. Nanosilica-from medicine to pest control.         Parasitol. Res. 103(2):253-258.

            Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J. and Ramakrishna,        S. 2017. Recent advances in nanomaterials for water protection and monitoring.      Chem. Soc. Rev. 46(22):6946-7020.

            Elumalai, D., Kaleena, P.K., Ashok, K., Suresh, A. and Hemavathi, M. 2016. Green          synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity     against three major mosquito vectors. Eng. Agric. Environ.  Food  9(1):1-8.

Finney, D. J., 1971. Probit analysis, Cambridge University Press. Cambridge, UK  68-78p.

            Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam,       S., Dhineshkumar, M. and Kumaraguru, A.K. 2011. Biosynthesis of silver       nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac. J. Trop. Med. 4(10):799-803.

            Gul, S., Ismail, M., Khan, M.I., Khan, S.B., Asiri, A.M., Rahman, I.U., Khan, M.A. and    Kamboh, M.A. 2016. Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Musca      domestica. Asian Pac. J. Trop. Dis. 6(4):311-316.

            Kamaraj, C., Govindasamy Rajkumar, Abdul Abdul Rahuman, Kanayairam Velayutham.,            Asokan Bagavan, Abdul Abduz Zahir and Gandhi Elango. 2012. Feeding deterrent             activity of synthesised silver nanoparticles using Manilkara zapota leaf extract against    the house fly, Musca domestica (Diptera: Muscidae). Parasitol. Res. 111:2439-2448.

            Kalimuthu, K., Panneerselvam, C., Murugan, K. and Hwang, J.S. 2013. Green synthesis of           silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and    pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J. Entomol. Acarol. Res. 45(2):57-64

            Kettle, D.S. 1995. Medical and Veterinary Entomology.(2ndEd.) Cambridge University     Press, C. A. B. International Wallingford, United Kingdom, 225-250pp.

            El-Monairy M., Abla D. Abdel-Meguid and Manar M. Emara. 2020. Efficacy of methanol            leaf extract, biosynthesised silver and chitosan nanoparticles using Nerium oleander     against Musca domestica. Egypt. Acad. J. Biolog. Sci. 12(2):35.

            Lohmeyer, K.H. and Kammlah, D.M. 2006. Improved mass rearing techniques for the horn          fly, Haematobia irritans (L.) (Diptera: Muscidae). SouthWest Entomol. 31(1):83-85.

            Mullen G.R. and Durden A.L. 2019. Medical and Veterinary Entomology.(3rdEd.).            Academic Press, 125 London wall, London EC2Y 5AS, United Kingdom. 345-354p.

            Murugan, K., Nataraj, D., Madhiyazhagan, P., Sujitha, V., Chandramohan, B.,       Panneerselvam, C., Dinesh, D., Chandirasekar, R., Kovendan, K., Suresh, U. and            Subramaniam, J. 2016. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioural traits        of non-target aquatic organisms. Parasitol. Res. 115(3): 1071-1083

            Nagarajan, K. V. and Vijayarangan, D. R. 2019. Lagenaria siceraria synthesised ZnO NPs–        A valuable green route to control the malaria vector Anopheles stephensi. IET Nanobiotechnol. 13(2):170-177.

            Nair, P.M.G., Park, S.Y. and Choi, J. 2013. Evaluation of the effect of silver nanoparticles           and silver ions using stress responsive gene expression in Chironomus riparius.         Chemosphere, 92(5):592-599.

            Holderman, C.J., Sanchez-Sandoval, U.A., Ramirez, J. and Smythe, B.G.  2020. Laboratory         methods for rearing horn flies (Diptera: Muscidae). J. Insect Sci. 20(6):10-14.

            Packialakshmi, N. and Naziya, S. 2014. Green synthesis of silver nanoparticles from stem            extracts of Caralluma fimbriyata and its antibacterial activity. Int. J. Appl. Sci.            2(3):305-310.

            Rabab M. Abdel-Gawad, 2018. Insecticidal Activity of Moringa oleifera synthesised silver          and zinc nanoparticles against the House Fly, Musca domestica L. Egypt. Acad. J.   Biolog. Sci. 11(4):19-30.

            Rajan, R., Chandran, K., Harper, S.L., Yun, S.I. and Kalaichelvan, P.T. 2015. Plant extract           synthesised silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crops Prod. 70:356-373.

            Raj, K.J.A. and Viswanathan, B. 2009. Single-step synthesis and structural study   of         mesoporous sulfated titania nanopowder by a controlled hydrolysis process. ACS            Appl. Mat. Interfaces 1(11):2462-2469.

            Rodríguez-Vivas, R.I., Grisi, L., Pérez De León, A.A., Villela, H.S., Torres-Acosta, J.F.D.J.,        Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F. and García             Carrasco, D. 2017. Potential economic impact assessment for cattle parasites in   Mexico. Review. Rev. Mex. Cienc. Pecu. 8(1):61-74.

            Sareen, S.J., Pillai, R.K., Chandramohanakumar, N. and Balagopalan, M. 2012. Larvicidal           potential of biologically synthesised silver nanoparticles against Aedes Albopictus.       Res. J. Recent Sci. 1(ISC-2011): 52-56.

            Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. 2004. Rapid synthesis of Au, Ag and     bimetallic Au coreAg shell nanoparticles using Neem (Azadirachta indica) leaf           broth. J. Colloid Interface Sci. 275(2):496-502.

Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P. and Kumar, P. 2018. Green          synthesis of metals and their oxide nanoparticles: applications for           environmental             remediation. J. Nanobiotechnol. 16(1):1-24.

            Soni, N. and Dhiman, R.C. 2020. Larvicidal activity of zinc oxide and titanium dioxide    nanoparticles synthesis using Cuscuta reflexa extract against malaria vector         (Anopheles stephensi). Egypt. J. Appl. Sci. 7(1):342-352.

            Soulsby E.J.L. 1982. Helminths, Arthropods and Protozoa of Domesticated Animals. (7thEd.)       The English Language Book Society and Bailliere Tindall, Londaon,  404-412p.

            Srinivasan, R., Jambulingam, P., Gunasekaran, K. and Boopathidoss, P. S. 2008. Tolerance          of house fly, Musca domestica L. (Diptera: Muscidae) to dichlorvos (76% EC) an          insecticide used for fly control in the tsunami-hit coastal villages of Southern India.    Acta Trop. 105(2):187-190.

            Subramaniam, J., Murugan, K., Panneerselvam, C., Kovendan, K., Madhiyazhagan, P.,     Kumar, P.M., Dinesh, D., Chandramohan, B., Suresh, U., Nicoletti, M. and Higuchi,        A. 2015. Eco-friendly control of malaria and arbovirus vectors using the mosquito     fish Gambusia affinis and ultralow dosages of Mimusops elengi synthesised silver         nanoparticles: towards an integrative approach. Environ. Sci. Pol. Res. 22(24): 20067- 20083.

            Walker A. 1994. Arthropods of Humans and Domestic Animals. (1stEd.). Chapman and     Hall, 2-6 Boundary row, London. 90-101p.

            Wright, J.W. 1971. The WHO Programme for the evaluation and testing of new insecticides.        Bull. World Hlth. Org. 44:11-22.

            Velayutham, K., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Marimuthu, S.,       Jayaseelan, C., Bagavan, A., Kirthi, A.V., Kamaraj, C., Zahir, A.A. and Elango, G.            2012. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res. 111(6): 2329-2337.

            Veerakumar, K., Govindarajan, M., Rajeswary, M. and Muthukumaran, U. 2014. Mosquito          larvicidal properties of silver nanoparticles synthesised using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex        quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 113(6):2363-2373

Cite this article

Jagadish, Mamatha, G.S., Ravikumar, C., Lakkundi, J.N., Isloor, S.K., Shilpa, V.T., Prasad, T.N.K.V., Yathish, H.M., Ananda, K.J. 2024. Insecticidal activity of silver nanoparticles synthesised from aqueous leaf extract of Eucalyptus tereticornis on horn flies. J. Vet. Anim. Sci. 55 (3):651-657

Views
163
Downloads
71
Citations