Journal of Veterinary and Animal Sciences

Volume: 55 Issue: 3

  • Open Access
  • Research Article

Optimisation of induction and purification protocols of recombinant 22.6kDa tegumental protein of Schistosoma spindale inprokaryotic vector

Nikitha Shajan1, M.N Priya1*, Bindu Lakshmanan1, Amrutha Anand1, Ambily R.2, M.A Pradeep3 and Asha Rajagopal1

1 Department of Veterinary Parasitology, 2 Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur-680651, Kerala Veterinary and Animal Sciences University, Kerala, India, 3 Central Marine Fisheries Research Institute, Kochi

Year: 2024, Page: 623-630, Doi: https://doi.org/10.51966/jvas.2024.55.3.623-630

Received: April 9, 2024 Accepted: May 16, 2024 Published: Sept. 30, 2024

Abstract

Schistosomosis is a prevalent zoonotic parasitic disease affecting both humans and animals on a global scale, with an estimated 165 million cattle and 200 million people impacted worldwide. Eventhough, serological methodologies designed for the identification of specific antibodies targeting parasitic antigens are esteemed for their high sensitivity, there are criticisms due to their incapacity to reliably indicate active infection, inability to correlate with the intensity of infection and lack of specificity. Enhancing the specificity of serological assays presents a significant challenge, primarily attributable to the identification and synthesis of specific antigens. In addressing these limitations, recombinant technology with specific immunogenic proteins as candidate antigens emerges as a viable alternative. In this study, induction of 22.6 kDa recombinant tegument protein of Schistosoma spindale was achieved using 0.6 mM concentration of IPTG at 37°C for four hours. Nickel chelating affinity chromatography was employed for protein purification, yielding maximum protein concentration at 75mM elution. Subsequently, the dialysis technique was employed to remove contaminants, while lyophilisation method was employed for protein concentration. The protein concentration postdialysis was measured at 0.220 mg/mL, while lyophilisation resulted in a concentration of 2mg/m

Keywords: 22.6 kDa tegumental protein, Schistosoma spindale, dialysis, lyophilisation

References

Agrawal, M. C. and Southgate, V. R. 2000. Schistosoma spindale and bovine schistosomosis. J. Vet. Parasitol. 14: 95-107.

Andrew, S.M., Titus, J.A. and Zumstein, L., 2001. Dialysis and concentration of protein solutions. Curr. Protoc. Toxicol. 10: A-3H.

Atroshenko, D.L., Sergeev, E.P., Golovina, D.I. and Pometun, A.A. 2024. Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli. Fermentation 10: 120.

Cai, P., Bu, L., Wang, J., Wang, Z., Zhong, X. and Wang, H. 2008. Molecular characterization of Schistosoma japonicum tegument protein tetraspanin- 2: Sequence variation and possible implications for immune evasion. Biochem. Biophys. Res. Commun. 327: 197-202.

Carpenter, J.F., Chang, B.S., Garzon-Rodriguez, W. and Randolph, T.W. 2002. Rationale design of stable lyophilised protein formulations: theory and practice in "Rationale Design of stable protein formulations-theory and practice" (J.F. Carpenter and M.C. Manning eds.) Kluwer Academic/Plenum publishers, New York, pp. 109-133

Cleland, J.L., Powell, M.F. and Shire, S.J. 1993. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carr. Syst. 10: 307-377.

Damasceno, L., Ritter, G. and Batt, C.A. 2017. Process development for production and purification of the Schistosoma mansoni Sm14 antigen. Protein Expr. Purif. 134: 72-81.

Eswari,J.S.and Naik, S.2020. A critical analysis on various technologies and functionalized materials for manufacturing dialysis membranes. Mat. Sci. Energy Technol. 3: 116–126 

Einsfeldt, K., Júnior, J.B.S., Argondizzo, A.P.C., Medeiros, M.A., Alves, T.L.M., Almeida, R.V. and Larentis, A.L. 2011. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 29: 7136-7143.

Fonseca, C.T., Carvalho, G.B.F., Alves, C.C. and DeMelo, T.T. 2012. Schistosoma Tegument Proteins in Vaccine and Diagnosis Development: An Update. J. Parasitol. Res. doi:10.1155/2012/541268.

Geeraerd, A.H., Herremans, C.H. and Van Impe, J.F. 2000. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 59: 185-209.

Gharakhani, M., Ghasemi, M.F., Khaki, P., Esmaelizad, M. and Tebianian, M. 2023. Improvement the expression and purification of Loa22: a lipoprotein with OmpA domain from pathogenic Leptospira serovarsIran. J. Microbiol. 15: 674.

Han, Z.G., Brindley, P.J., Wang, S.Y., Chen, Z., 2009. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annual review of genomics and human genetics 10: 211-240. doi: 10.1146/annurev-genom-082908-150036

Islam, M.N., Begum, N., Alam, M.Z. and Mamun, A.A. 2011. Epidemiology of intestinal schistosomiasis in ruminants of Bangladesh. J. Bangladesh Agric. Univ. 9: 221-228.

Jeong, K.J. and Lee, S.Y. 1999. High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl. Environ. Microbiol. 65: 3027-3032.

 Juza, M.,  Mazzotti, M. and Morbidelli, M. 2000. Simulated Moving Bed Chromatography and Its Application to Chirotechnology. Trends Biotechnol. 18:108-18. DOI:10.1016/S0167-7799(99)01419-5.

Kokpinar, O., Harkensee, D., Kasper, C., Scheper, T., Zeidler, R., Reif, O.W. and Ulber, R. 2006. Innovative modular membrane adsorber system for high‐throughput downstream screening for protein purification. Biotechnol. Prog. 22: 1215-1219.

Lakshmanan, B., Rauoof, A., Fawaz, M. and Subramanian, H. 2011. Abattoir survey of Shistosoma spindale infection in thrissur. J. Vet. Anim. Sci. 42: 53-54.

Larentis, A.L., Nicolau, J.F.M.Q., Esteves, G.D.S., Vareschini, D.T., de Almeida, F.V.R., dos Reis, M.G., Galler, R. and Medeiros, M.A. 2014. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC research notes 7:.1-13.

Li, Y., Wang, L., Fang, R., Nie, H., Zhou, Y. and Zhao, J. 2012. Establishment and evaluation of an iELISA using the recombinant membrane protein LHD-Sj23for the serodiagnosis of Schistosoma japonicum infection in cattle in China. Vet Parasitol. 188: 247-254.

Lilie, H., Schwarz, E., Rudolph, R. and Hilgenfeld, R. 2000. Controlled reshuffling of a protein folding intermediate by rational compound design: a dialysis study. J. Mol. Biol. 297: 1091-1102.

Lopes, D.O., Paiva, L.F., Martins, M.A., Cardoso, F.C., Rajão, M.A., Pinho, J.M., Caliari, M.V., Oliveira, R.C., Mello, S.M., Leite, L.C.C. and Oliveira, S.C. 2009. Sm21.6 a novel EF-hand family protein member located on the surface of Schistosoma mansoni adult worm that failed to induce protection against challenge infection but reduced liver pathology. Vaccine. 27: 4127-4135.

Ludwig, C., Claassen, M., Schmidt, A. and Aebersold, R. 2019. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol. Cellular Proteomics. 18: 1027-1036.

Lv, C., Hong, Y., Fu, Z., Lu, K., Cao, X., Wang, T., Zhu, C., Li, H., Xu, R., Jia, B., Han, Q., Dou, X., Shen, Y., Zhang, Z., Zai, J., Feng, J. and Lin, J. 2016. Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay. Parasites Vectors. 9: 135-145.

Malik, A., Alsenaidy, A.M., Elrobh, M., Khan, W., Alanazi, M.S. and Bazzi, M.D. 2016. Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli. Saudi J. Biol. Sci. 23: 410-419.

Marbach, A. and Bettenbrock, K. 2012. Lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J. Biotechnol. 157: 82-88.

McCauley, E.H., Majid, A.A. and Tayeb, A. 1984. Economic evaluation of the production impact of bovine schistosomiasis and vaccination in Sudan. Preventive Vet. Med. 6: 735-754.

McManus, D.P., Wong, J.Y.M., Zhoub, J., Cai, C., Zeng, Q., Smyth, D., Li, Y., Kalinna, B. H., Duke, M.J. and Yi, X. 2002. Recombinant paramyosin (rec-Sj-97) tested for immunogenicity and vaccine efficacy against Schistosoma japonicum in mice and water buffaloes. Vaccine. 20: 87.

Meng, J., Walter, J.G., Kökpinar, Ö., Stahl, F. and Scheper, T., 2008. Automated microscale His‐tagged protein purification using Ni‐NTA magnetic agarose beads. Chem. Eng. Technol. 31: 463-468.

Mulvenna, J., Moertel, L., Jones, M.K., Nawaratna, S., Lovas, E.M., Gobert, G.N., Colgrave, M., Jones, A., Loukas, A., McManus, D.P., 2010. Exposed proteins of the Schistosoma japonicum tegument. Int. J. Parasitol. 40: 543-554. doi: 10.1016/j.ijpara.2009.10.002

Pacifico, L.G., Fonseca, C.T., Chiari, L., Oliveira, S.C., 2006. Immunization with Schistosoma mansoni 22.6 kDa antigen induces partial protection against experimental infection in a recombinant protein form but not as DNA vaccine. Immunobiology 211: 97-104.

Pansare, S. and Patel, S.M. 2019. Lyophilization Process Design and Development: A Single-Step Drying Approach. J. Pharm. Sci. 108: 1423-1433. https://doi.org/10.1016/j.xphs.2018.11.021

Papaneophytou, C.P., Rinotas, V., Douni, E. and Kontopidis, G. 2013. A statistical approach for optimization of RANKL overexpression in Escherichia coli: purification and characterization of the protein. Protein Expr. Purif. 90: 9-19.

Peng, S.Y., Lee, K.M., Tsaihong, J.C., Cheng, P.C. and Fan, P.C. 2008.Evaluation of recombinant fructose-1,6-bisphosphate aldolase ELISA test for the diagnosis of Schistosoma japonicum in water buffaloes. Res. Vet. Sci. 85: 527-533.

Pikal, M.J., Dellerman, K.M., Roy, M.L. and Riggin, R.M. 2000. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm. Res. 17: 551-558.

Priya, M.N., 2019. Development and evaluation of recombinant protein based elisa for the diagnosis of intestinal schistosomosis. PhD thesis. Kerala Veterinary and Animal Sciences Univesity.

Qiu, C., Fu, Z., Shi, Y., Hong, Y., Liu, S., and Lin. J. 2013. A retinoid X receptor (RXR1) homolog from Schistosoma japonicum: Its ligand-binding domain may bind to 9-cis-retinoic acid. Mol. Biochem. Parasitol. 188: 40-50.

Rasooli, F. and Hashemi, A. 2019. Efficient expression of EpEX in the cytoplasm of Escherichia coli using thioredoxin fusion protein. RPS 14: 554-565.

Ren, C.P., Liu, Q., Liu, F.C., Zhu, F.Y., Cui, S. X., Liu, Z., Gao, W.D., Liu, M., Ji. Y.S. and Shen, J. J. 2017. Development of monoclonal antibodies against Sj29 and its possible application for schistosomiasis diagnosis. Intl. J. Infectious Dis. 61:74-78.

Rosano, G.L. and Ceccarelli, E.A. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. doi: 10. 3389/fmicb.2014.00172

Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A laboratory manual. (3rd Ed), Cold Spring Harbor Laboratory Press, New York. 2100p.

Sharma, A., Dikshitkumar Khamar, D., Sean Cullen, S., Ambrose Hayden, A. and  Helen Hughes, H. 2021. Innovative Drying Technologies for Biopharmaceuticals. Int. J. Pharm. 609: 121115. https://doi.org/10.1016/j.ijpharm.2021.121115

Soleymani, B. and Mostafaie, A. 2019. Analysis of methods to improve the solubility of recombinant bovine sex determining region Y protein. RBMB 8: 227.

Sudhakar, K., Murthy, G. S. S. and Rajeshwari, G. 2016. An abattoir study of bovine visceral schistosomiasis in Telengana state, India. Int. J. Agric. Sci. 8: 3205-3208.

Sumanth, S., D’Souza, P.E. and Jagannath, M.S. 2004. A study of nasal and visceral schistosomosis in cattle slaughtered at an abattoir in Bangalore, South India. Rev. Sci. Tech. Off. Int. Epiz. 23: 937-942.

Torre-Escudero, E., Román, R.M., Sánchez, R.P., Barrera, I., Siles-Lucas, M. and Oleaga, A. 2012. Molecular cloning, characterization and diagnostic performance of the Schistosoma bovis 22.6 antigen. Vet. Parasitol. 190: 530-540.

Vercruysse, J. and Gabriël, S. 2005. Immunity to schistosomiasis in animals: an update. Parasite Immunol. 27: 289-295.

Williams, R.O., Reynolds, T.D., and Andrews, G.P. 2013. Biopharmaceutical Considerations in Freeze-Drying: Effects of Annealing on Protein Stability During Freeze-Drying. In Pharmaceutical Freeze-Drying Technology. pp. 129-144. CRC Press.

Wiltzius, J.J. and Sieker, L.C. 2019. Continuous dialysis and protein crystal growth. J. Cryst. Growth. 106: 380-386.

Xie, L., Hall, D., Eiteman, M.A. and Altman, E.J.A.M. 2003. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biotechnol. 63: 267-273.

Xiong, Y., Ai, D., Meng, P., Wei, M., Hong, Y., Zhang, M., Huang, L., Fu, Z., Shi, Y. and Lin, J. 2013. Cloning, expression, and preliminary characterization of the dysferlin tegument protein in Schistosoma japonicum. Parasitol. Int. 62: 522–529.

Xu, X., Zhang, Y., Lin, D., Zhang, J., Xu, J., Liu, Y.M., Hu, F., Qing, X., Xia, C., Pan, W., 2014. Serodiagnosis of Schistosoma japonicum infection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in China. Lancet. Infect. Dis. 14: 489-497. doi: 10.1016/S1473-3099(14)70067-2

Zhang, Y., He. Y., He, L., Zong, H. Y. and Cai, G. B. 2015. Parasitology molecular cloning and characterization of a phospholipidhydroperoxide glutathione peroxidase gene from a blood fluke Schistosoma japonicum. Mol. Biochem. Parasitol. 203: 5-13.

Zhang, Y., Taylor, M.G. and Bickle, Q.D. 1998. Schistosoma japonicum myosin:cloning, expression and vaccination studies with the homologue of the S. mansoni myosin fragment IrV-5. Parasite Immunol. 20: 583-594.

Zhang, Z., Xu, H., Gan, W., Zeng, S. and Hu, X. 2012. Schistosoma japonicum calcium-binding tegumental protein SjTP22.4 immunization confers praziquantel schistosomulumicide and antifecundity effect in mice. Vaccine. 30: 5141-5150

Cite this article

: Nikitha, S., Priya, M.N., Bindu, L., Amrutha, A., Ambily, R., Pradeep, M.A. and Asha, R. 2024. Optimisation of induction and purification protocols of recombinant 22.6kDa tegumental protein of Schistosoma spindale in prokaryotic vector. J. Vet. Anim. Sci. 55 (3):623-630

Views
35
Downloads
18
Citations